Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 619
Filter
1.
Viruses ; 13(12)2021 12 11.
Article in English | MEDLINE | ID: mdl-34960752

ABSTRACT

Patients with COVID-19 generally raise antibodies against SARS-CoV-2 following infection, and the antibody level is positively correlated to the severity of disease. Whether the viral antibodies exacerbate COVID-19 through antibody-dependent enhancement (ADE) is still not fully understood. Here, we conducted in vitro assessment of whether convalescent serum enhanced SARS-CoV-2 infection or induced excessive immune responses in immune cells. Our data revealed that SARS-CoV-2 infection of primary B cells, macrophages and monocytes, which express variable levels of FcγR, could be enhanced by convalescent serum from COVID-19 patients. We also determined the factors associated with ADE, and found which showed a time-dependent but not viral-dose dependent manner. Furthermore, the ADE effect is not associated with the neutralizing titer or RBD antibody level when testing serum samples collected from different patients. However, it is higher in a medium level than low or high dilutions in a given sample that showed ADE effect, which is similar to dengue. Finally, we demonstrated more viral genes or dysregulated host immune gene expression under ADE conditions compared to the no-serum infection group. Collectively, our study provides insight into the understanding of an association of high viral antibody titer and severe lung pathology in severe patients with COVID-19.


Subject(s)
Antibody-Dependent Enhancement/immunology , Leukocytes/virology , SARS-CoV-2/pathogenicity , COVID-19/immunology , Cells, Cultured , Gene Expression Profiling , Humans , Immune Sera/immunology , Leukocytes/metabolism , Receptors, IgG/metabolism , Virus Replication/immunology
2.
Viruses ; 13(12)2021 12 13.
Article in English | MEDLINE | ID: mdl-34960767

ABSTRACT

Small ruminant lentiviruses (SRLVs) exist as populations of closely related genetic variants, known as quasispecies, within an individual host. The privileged way of SRLVs transmission in goats is through the ingestion of colostrum and milk of infected does. Thus, characterization of SRLV variants transmitted through the milk, including milk epithelial cells (MEC), may provide useful information about the transmission and evolution of SRLVs. Therefore, the aim of this study was to detect SRLVs in peripheral blood leukocytes (PBLs) and milk epithelial cells of goats naturally infected with SRLVs and perform single nucleotide variations analysis to characterize the extent of genetic heterogeneity of detected SRLVs through comparison of their gag gene sequences. Blood and milk samples from 24 seropositive goats were tested in this study. The double immunolabeling against p28 and cytokeratin demonstrated that milk epithelial cells originated from naturally infected goats were infected by SRLVs. Moreover, PCR confirmed the presence of the integrated SRLVs proviral genome indicating that MECs may have a role as a reservoir of SRLVs and can transmit the virus through milk. The blood and MEC derived sequences from 7 goats were successfully sequenced using NGS and revealed that these sequences were genetically similar. The MEC and blood-derived sequences contained from 3 to 30 (mean, 10.8) and from 1 to 10 (mean, 5.4) unique SNVs, respectively. In five out of seven goats, SNVs occurred more frequent in MEC derived sequences. Non-synonymous SNVs were found in both, PBLs and MEC-derived sequences of analyzed goats and their total number differed between animals. The results of this study add to our understanding of SRLVs genomic variability. Our data provides evidence for the existence of SRLVs quasispecies and to our knowledge, this is the first study that showed quasispecies composition and minority variants of SRLVs present milk epithelial cells.


Subject(s)
Goats/virology , Lentivirus/isolation & purification , Leukocytes/virology , Milk/virology , Animals , Cells, Cultured , Epithelial Cells/virology , Lentivirus/genetics , Polymorphism, Single Nucleotide
3.
Cell ; 184(19): 4953-4968.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34492226

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is characterized by overproduction of immune mediators, but the role of interferons (IFNs) of the type I (IFN-I) or type III (IFN-III) families remains debated. We scrutinized the production of IFNs along the respiratory tract of COVID-19 patients and found that high levels of IFN-III, and to a lesser extent IFN-I, characterize the upper airways of patients with high viral burden but reduced disease risk or severity. Production of specific IFN-III, but not IFN-I, members denotes patients with a mild pathology and efficiently drives the transcription of genes that protect against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In contrast, compared to subjects with other infectious or noninfectious lung pathologies, IFNs are overrepresented in the lower airways of patients with severe COVID-19 that exhibit gene pathways associated with increased apoptosis and decreased proliferation. Our data demonstrate a dynamic production of IFNs in SARS-CoV-2-infected patients and show IFNs play opposing roles at distinct anatomical sites.


Subject(s)
COVID-19/pathology , Interferons/metabolism , Respiratory System/virology , Severity of Illness Index , Age Factors , Aging/pathology , COVID-19/genetics , COVID-19/immunology , Epithelial Cells/pathology , Epithelial Cells/virology , Gene Expression Regulation , Humans , Interferons/genetics , Leukocytes/pathology , Leukocytes/virology , Lung/pathology , Lung/virology , Respiratory Distress Syndrome/pathology , Respiratory Distress Syndrome/virology , Viral Load
5.
Front Immunol ; 12: 692509, 2021.
Article in English | MEDLINE | ID: mdl-34335602

ABSTRACT

Hantaan virus (HTNV) infects humans and causes hemorrhagic fever with renal syndrome (HFRS). The development of well-characterized animal models of HFRS could accelerate the testing of vaccine candidates and therapeutic agents and provide a useful tool for studying the pathogenesis of HFRS. Because NLRC3 has multiple immunoregulatory roles, we investigated the susceptibility of Nlrc3-/- mice to HTNV infection in order to establish a new model of HFRS. Nlrc3-/- mice developed weight loss, renal hemorrhage, and tubule dilation after HTNV infection, recapitulating many clinical symptoms of human HFRS. Moreover, infected Nlrc3-/- mice showed higher viral loads in serum, spleen, and kidney than wild type C57BL/6 (WT) mice, and some of them manifested more hematological disorders and significant pathological changes within multiple organs than WT mice. Our results identify that HTNV infected Nlrc3-/- mice can develop clinical symptoms and pathological changes resembling patients with HFRS, suggesting a new model for studying the pathogenesis and testing of candidate vaccines and therapeutics.


Subject(s)
Hantaan virus/pathogenicity , Hemorrhagic Fever with Renal Syndrome/virology , Intercellular Signaling Peptides and Proteins/deficiency , Kidney/virology , Animals , Cytokines/blood , Disease Models, Animal , Genetic Predisposition to Disease , Hantaan virus/immunology , Hemorrhagic Fever with Renal Syndrome/immunology , Hemorrhagic Fever with Renal Syndrome/metabolism , Hemorrhagic Fever with Renal Syndrome/pathology , Host-Pathogen Interactions , Intercellular Signaling Peptides and Proteins/genetics , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Leukocytes/immunology , Leukocytes/metabolism , Leukocytes/virology , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Viral Load
6.
Adv Sci (Weinh) ; 8(18): e2100323, 2021 09.
Article in English | MEDLINE | ID: mdl-34278739

ABSTRACT

Blood cell analysis is a major pillar of biomedical research and healthcare. These analyses are performed in central laboratories. Rapid shipment from collection site to the central laboratories is currently needed because cells and biomarkers degrade rapidly. The dried blood spot from a fingerstick allows the preservation of cellular molecules for months but entire cells are never recovered. Here leucocyte elution is optimized from dried blood spots. Flow cytometry and mRNA expression profiling are used to analyze the recovered cells. 50-70% of the leucocytes that are dried on a polyester solid support via elution after shaking the support with buffer are recovered. While red blood cells lyse upon drying, it is found that the majority of leucocytes are preserved. Leucocytes have an altered structure that is improved by adding fixative in the elution buffer. Leucocytes are permeabilized, allowing an easy staining of all cellular compartments. Common immunophenotyping and mRNAs are preserved. The ability of a new biomarker (CD169) to discriminate between patients with and without Severe Acute Respiratory Syndrome induced by Coronavirus 2 (SARS-CoV-2) infections is also preserved. Leucocytes from blood can be dried, shipped, and/or stored for at least 1 month, then recovered for a wide variety of analyses, potentially facilitating biomedical applications worldwide.


Subject(s)
Communicable Diseases/diagnosis , Diagnostic Tests, Routine/methods , Dried Blood Spot Testing/methods , Hematology/methods , Immunophenotyping/methods , Antibodies, Viral/blood , Biomarkers/blood , Blood Specimen Collection/methods , COVID-19/diagnosis , Cell Separation/methods , Communicable Diseases/virology , Erythrocytes/virology , Flow Cytometry/methods , Humans , Leukocytes/virology , RNA, Messenger/blood , SARS-CoV-2/genetics
7.
Commun Biol ; 4(1): 861, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253821

ABSTRACT

Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.


Subject(s)
Colon/virology , Dendritic Cells/virology , Rectum/virology , Semen/virology , Simian Immunodeficiency Virus/physiology , Virus Replication/physiology , Animals , Colon/metabolism , Cytokines/metabolism , HIV Infections/metabolism , HIV Infections/transmission , HIV Infections/virology , HIV-1/physiology , Leukocytes/metabolism , Leukocytes/pathology , Leukocytes/virology , Macaca mulatta , Male , Rectum/metabolism , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Acquired Immunodeficiency Syndrome/transmission , Simian Acquired Immunodeficiency Syndrome/virology , Tissue Culture Techniques
8.
Viruses ; 13(5)2021 05 10.
Article in English | MEDLINE | ID: mdl-34068469

ABSTRACT

Grass carp reovirus (GCRV) causes serious losses to the grass carp industry. At present, infectious tissues of GCRV have been studied, but target cells remain unclear. In this study, peripheral blood cells were isolated, cultured, and infected with GCRV. Using quantitative real-time polymerase chain reaction (qRT-PCR), Western Blot, indirect immunofluorescence, flow cytometry, and transmission electron microscopy observation, a model of GCRV infected blood cells in vitro was established. The experimental results showed GCRV could be detectable in leukocytes only, while erythrocytes and thrombocytes could not. The virus particles in leukocytes are wrapped by empty membrane vesicles that resemble phagocytic vesicles. The empty membrane vesicles of leukocytes are different from virus inclusion bodies in C. idella kidney (CIK) cells. Meanwhile, the expression levels of IFN1, IL-1ß, Mx2, TNFα were significantly up-regulated in leukocytes, indicating that GCRV could cause the production of the related immune responses. Therefore, GCRV can infect leukocytes in vitro, but not infect erythrocytes and thrombocytes. Leukocytes are target cells in blood cells of GCRV infections. This study lays a theoretical foundation for the study of the GCRV infection mechanism and anti-GCRV immunity.


Subject(s)
Carps , Fish Diseases/virology , Leukocytes/virology , Reoviridae Infections/veterinary , Reoviridae/physiology , Animals , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Blood Platelets/virology , Cells, Cultured , Erythrocytes/metabolism , Erythrocytes/ultrastructure , Erythrocytes/virology , Flow Cytometry , Leukocytes/metabolism , Leukocytes/ultrastructure , Reoviridae/ultrastructure , Viral Load
9.
J Virol ; 95(17): e0079421, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34160250

ABSTRACT

Increased mortality in COVID-19 cases is often associated with microvascular complications. We have recently shown that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein promotes an inflammatory cytokine interleukin 6 (IL-6)/IL-6R-induced trans signaling response and alarmin secretion. Virus-infected or spike-transfected human epithelial cells exhibited an increase in senescence, with a release of senescence-associated secretory phenotype (SASP)-related inflammatory molecules. Introduction of the bromodomain-containing protein 4 (BRD4) inhibitor AZD5153 to senescent epithelial cells reversed this effect and reduced SASP-related inflammatory molecule release in TMNK-1 or EAhy926 (representative human endothelial cell lines), when cells were exposed to cell culture medium (CM) derived from A549 cells expressing SARS-CoV-2 spike protein. Cells also exhibited a senescence phenotype with enhanced p16, p21, and senescence-associated ß-galactosidase (SA-ß-Gal) expression and triggered SASP pathways. Inhibition of IL-6 trans signaling by tocilizumab and inhibition of inflammatory receptor signaling by the Bruton's tyrosine kinase (BTK) inhibitor zanubrutinib, prior to exposure of CM to endothelial cells, inhibited p21 and p16 induction. We also observed an increase in reactive oxygen species (ROS) in A549 spike-transfected and endothelial cells exposed to spike-transfected CM. ROS generation in endothelial cell lines was reduced after treatment with tocilizumab and zanubrutinib. Cellular senescence was associated with an increased level of the endothelial adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1), which have in vitro leukocyte attachment potential. Inhibition of senescence or SASP function prevented VCAM-1/ICAM-1 expression and leukocyte attachment. Taken together, we identified that human endothelial cells exposed to cell culture supernatant derived from SARS-CoV-2 spike protein expression displayed cellular senescence markers, leading to enhanced leukocyte adhesion. IMPORTANCE The present study was aimed at examining the underlying mechanism of extrapulmonary manifestations of SARS-CoV-2 spike protein-associated pathogenesis, with the notion that infection of the pulmonary epithelium can lead to mediators that drive endothelial dysfunction. We utilized SARS-CoV-2 spike protein expression in cultured human hepatocytes (Huh7.5) and pneumocytes (A549) to generate conditioned culture medium (CM). Endothelial cell lines (TMNK-1 or EAhy926) treated with CM exhibited an increase in cellular senescence markers by a paracrine mode and led to leukocyte adhesion. Overall, the link between these responses in endothelial cell senescence and a potential contribution to microvascular complication in productively SARS-CoV-2-infected humans is implicated. Furthermore, the use of inhibitors (BTK, IL-6, and BRD4) showed a reverse effect in the senescent cells. These results may support the selection of potential adjunct therapeutic modalities to impede SARS-CoV-2-associated pathogenesis.


Subject(s)
Cellular Senescence , Endothelial Cells/metabolism , Leukocytes/metabolism , Paracrine Communication , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Cell Adhesion , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Endothelial Cells/pathology , Endothelial Cells/virology , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-6/metabolism , Leukocytes/pathology , Leukocytes/virology , Piperazines/pharmacology , Pyrazoles , Pyridazines , Reactive Oxygen Species/metabolism , Receptors, Interleukin-6/metabolism , Signal Transduction , Transcription Factors/antagonists & inhibitors , Transcription Factors/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
11.
J Med Virol ; 93(9): 5544-5554, 2021 09.
Article in English | MEDLINE | ID: mdl-34009691

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global epidemic disease caused by a novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing serious adverse effects on human health. In this study, we obtained a blood leukocytes sequencing data set of COVID-19 patients from the GEO database and obtained differentially expressed genes (DEGs). We further analyzed these DEGs by protein-protein interaction analysis and Gene Ontology enrichment analysis and identified the DEGs closely related to SARS-CoV-2 infection. Then, we constructed a six-gene model (comprising IFIT3, OASL, USP18, XAF1, IFI27, and EPSTI1) by logistic regression analysis and calculated the area under the ROC curve (AUC) for the diagnosis of COVID-19. The AUC values of the training group, testing group, and entire group were 0.930, 0.914, and 0.921, respectively. The six genes were highly expressed in patients with COVID-19 and positively correlated with the expression of SARS-CoV-2 invasion-related genes (ACE2, TMPRSS2, CTSB, and CTSL). The risk score calculated by this model was also positively correlated with the expression of TMPRSS2, CTSB, and CTSL, indicating that the six genes were closely related to SARS-CoV-2 infection. In conclusion, we comprehensively analyzed the functions of DEGs in the blood leukocytes of patients with COVID-19 and constructed a six-gene model that may contribute to the development of new diagnostic and therapeutic ideas for COVID-19. Moreover, these six genes may be therapeutic targets for COVID-19.


Subject(s)
COVID-19/metabolism , Gene Expression Regulation, Viral , Leukocytes/metabolism , Leukocytes/virology , SARS-CoV-2/metabolism , 2',5'-Oligoadenylate Synthetase , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , COVID-19/genetics , Female , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins , Logistic Models , Male , Membrane Proteins , Middle Aged , Neoplasm Proteins , SARS-CoV-2/genetics , Ubiquitin Thiolesterase
12.
Commun Biol ; 4(1): 377, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742093

ABSTRACT

Mammalian three-dimensional (3D) enteroids mirror in vivo intestinal organisation and are powerful tools to investigate intestinal cell biology and host-pathogen interactions. We have developed complex multilobulated 3D chicken enteroids from intestinal embryonic villi and adult crypts. These avian enteroids develop optimally in suspension without the structural support required to produce mammalian enteroids, resulting in an inside-out enteroid conformation with media-facing apical brush borders. Histological and transcriptional analyses show these enteroids comprise of differentiated intestinal epithelial cells bound by cell-cell junctions, and notably, include intraepithelial leukocytes and an inner core of lamina propria leukocytes. The advantageous polarisation of these enteroids has enabled infection of the epithelial apical surface with Salmonella Typhimurium, influenza A virus and Eimeria tenella without the need for micro-injection. We have created a comprehensive model of the chicken intestine which has the potential to explore epithelial and leukocyte interactions and responses in host-pathogen, food science and pharmaceutical research.


Subject(s)
Eimeria tenella/pathogenicity , Epithelial Cells , Influenza A virus/pathogenicity , Intestinal Mucosa , Leukocytes , Salmonella typhimurium/pathogenicity , Animals , Cells, Cultured , Cellular Microenvironment , Chickens , Eimeria tenella/immunology , Epithelial Cells/immunology , Epithelial Cells/microbiology , Epithelial Cells/parasitology , Epithelial Cells/virology , Host-Pathogen Interactions , Influenza A virus/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/parasitology , Intestinal Mucosa/virology , Leukocytes/immunology , Leukocytes/microbiology , Leukocytes/parasitology , Leukocytes/virology , Mice, Inbred C57BL , Organoids , Permeability , Phagocytosis , Phenotype , Quail , Salmonella typhimurium/immunology
13.
Cytometry A ; 99(5): 446-461, 2021 05.
Article in English | MEDLINE | ID: mdl-33496367

ABSTRACT

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining, and data acquisition protocols can all introduce technical variation that can confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We apply this workflow to characterize 184 whole blood samples collected longitudinally from a cohort of 72 hospitalized COVID-19 patients and healthy controls, highlighting dynamic disease-associated changes in circulating immune cell frequency and phenotype.


Subject(s)
COVID-19/diagnosis , Cell Separation , Flow Cytometry , Immunophenotyping , Leukocytes/immunology , SARS-CoV-2/immunology , Workflow , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Female , High-Throughput Screening Assays , Host-Pathogen Interactions , Humans , Leukocytes/metabolism , Leukocytes/virology , Male , Middle Aged , Predictive Value of Tests , SARS-CoV-2/pathogenicity , Severity of Illness Index , Young Adult
14.
Cell Death Dis ; 12(1): 50, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33414384

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) is associated with a hypercoagulable state, characterized by abnormal coagulation parameters and by increased incidence of cardiovascular complications. With this study, we aimed to investigate the activation state and the expression of transmembrane proteins in platelets of hospitalized COVID-19 patients. We investigated transmembrane proteins expression with a customized mass cytometry panel of 21 antibodies. Platelets of 8 hospitalized COVID-19 patients not requiring intensive care support and without pre-existing conditions were compared to platelets of healthy controls (11 donors) with and without in vitro stimulation with thrombin receptor-activating peptide (TRAP). Mass cytometry of non-stimulated platelets detected an increased surface expression of activation markers P-Selectin (0.67 vs. 1.87 median signal intensity for controls vs. patients, p = 0.0015) and LAMP-3 (CD63, 0.37 vs. 0.81, p = 0.0004), the GPIIb/IIIa complex (4.58 vs. 5.03, p < 0.0001) and other adhesion molecules involved in platelet activation and platelet-leukocyte interactions. Upon TRAP stimulation, mass cytometry detected a higher expression of P-selectin in COVID-19 samples compared to controls (p < 0.0001). However, we observed a significantly reduced capacity of COVID-19 platelets to increase the expression of activation markers LAMP-3 and P-Selectin upon stimulation with TRAP. We detected a hyperactivated phenotype in platelets during SARS-CoV-2 infection, consisting of highly expressed platelet activation markers, which might contribute to the hypercoagulopathy observed in COVID-19. In addition, several transmembrane proteins were more highly expressed compared to healthy controls. These findings support research projects investigating antithrombotic and antiplatelet treatment regimes in COVID-19 patients, and provide new insights on the phenotypical platelet expression during SARS-CoV-2 infection.


Subject(s)
Blood Platelets/pathology , COVID-19/complications , Leukocytes/pathology , SARS-CoV-2/isolation & purification , Thrombosis/epidemiology , Adult , Blood Platelets/metabolism , Blood Platelets/virology , COVID-19/transmission , COVID-19/virology , Case-Control Studies , Female , Germany/epidemiology , Humans , Leukocytes/metabolism , Leukocytes/virology , Male , Middle Aged , P-Selectin/metabolism , Peptide Fragments/metabolism , Phenotype , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombosis/virology
15.
Int J Lab Hematol ; 43(2): 160-168, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33264492

ABSTRACT

In December 2019, a new type of coronavirus was detected for the first time in Wuhan, Hubei Province, China. According to the reported data, the emerging coronavirus has spread worldwide, infecting more than fifty-seven million individuals, leading to more than one million deaths. The current study aimed to review and discuss the hematological findings of COVID-19. Laboratory changes and hematologic abnormalities have been reported repeatedly in COVID-19 patients. WBC count and peripheral blood lymphocytes are normal or slightly reduced while these indicators may change with the progression of the disease. In addition, several studies demonstrated that decreased hemoglobin levels in COVID-19 patients were associated with the severity of the disease. Moreover, thrombocytopenia, which is reported in 5%-40% of patients, is known to be associated with poor prognosis of the disease. COVID-19 can present with various hematologic manifestations. In this regard, accurate evaluation of laboratory indicators at the beginning and during COVID-19 can help physicians to adjust appropriate treatment and provide special and prompt care for those in need.


Subject(s)
COVID-19/blood , COVID-19/epidemiology , Hematology/methods , Pandemics , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Biomarkers/blood , Blood Platelets/immunology , Blood Platelets/pathology , Blood Platelets/virology , COVID-19/pathology , COVID-19/virology , China/epidemiology , Erythrocytes/immunology , Erythrocytes/pathology , Erythrocytes/virology , Hematology/instrumentation , Humans , Laboratories , Leukocytes/immunology , Leukocytes/pathology , Leukocytes/virology , Receptors, Virus/genetics , Receptors, Virus/immunology , SARS-CoV-2/physiology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virus Internalization
16.
J Dairy Sci ; 104(2): 1993-2007, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33246606

ABSTRACT

In dairy cattle infected with bovine leukemia virus (BLV), the proviral load (PVL) level is directly related to the viral transmission from infected animals to their healthy herdmates. Two contrasting phenotypic groups can be identified when assessing PVL in peripheral blood of infected cows. A large number of reports point to bovine genetic variants (single nucleotide polymorphisms) as one of the key determinants underlying PVL level. However, biological mechanisms driving BLV PVL profiles and infection progression in cattle have not yet been elucidated. In this study, we evaluated whether a set of candidate genes affecting BLV PVL level according to whole genome association studies are differentially expressed in peripheral blood mononuclear cells derived from phenotypically contrasting groups of BLV-infected cows. During a 10-mo-long sampling scheme, 129 Holstein cows were phenotyped measuring anti-BLV antibody levels, PVL quantification, and white blood cell subpopulation counts. Finally, the expression of 8 genes (BOLA-DRB3, PRRC2A, ABT1, TNF, BAG6, BOLA-A, LY6G5B, and IER3) located within the bovine major histocompatibility complex region harboring whole genome association SNP hits was evaluated in 2 phenotypic groups: high PVL (n = 7) and low PVL (n = 8). The log2 initial fluorescence value (N0) transformed mean expression values for the ABT1 transcription factor were statistically different in high- and low-PVL groups, showing a higher expression of the ABT1 gene in low-PVL cows. The PRRC2A and IER3 genes had a significant positive (correlation coefficient = 0.61) and negative (correlation coefficient = -0.45) correlation with the lymphocyte counts, respectively. Additionally, the relationships between gene expression values and lymphocyte counts were modeled using linear regressions. Lymphocyte levels in infected cows were better explained (coefficient of determination = 0.56) when fitted a multiple linear regression model using both PRRC2A and IER3 expression values as independent variables. The present study showed evidence of differential gene expression between contrasting BLV infection phenotypes. These genes have not been previously related to BLV pathobiology. This valuable information represents a step forward in understanding the BLV biology and the immune response of naturally infected cows under a commercial milk production system. Efforts to elucidate biological mechanisms leading to BLV infection progression in cows are valuable for BLV control programs. Further studies integrating genotypic data, global transcriptome analysis, and BLV progression phenotypes are needed to better understand the BLV-host interaction.


Subject(s)
Enzootic Bovine Leukosis/genetics , Leukemia Virus, Bovine/physiology , Polymorphism, Single Nucleotide/genetics , Animals , Cattle , Enzootic Bovine Leukosis/virology , Female , Genome-Wide Association Study/veterinary , Leukocyte Count/veterinary , Leukocytes/virology , Leukocytes, Mononuclear/virology , Lymphocyte Count/veterinary , Phenotype , Proviruses/physiology , Viral Load/veterinary
17.
Gene ; 773: 145363, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33338509

ABSTRACT

Acute myelogenous leukemia (AML) is one of the major hematological malignancies. In the human genome, several have been found to originate from retroviruses, and some of which are involved in the progression of various cancers. Hence, to investigate whether retroviral-like genes are associated with AML development, we conducted a transcriptome sequencing analysis of 12 retroviral-like genes of 150 AML patients and 32 healthy donor samples, of which RNA sequencing data were obtained from public databases. We found high expression of ERV3-1, an envelope gene of endogenous retrovirus group 3 member 1, in all AML patients examined in this study. In particular, blood and bone marrow cells of the myeloid lineage in AML patients, exhibited higher expression of ERV3-1 than those of the monocytic AML lineage. We also examined the protein expression of ERV3-1 by immunohistochemical analysis and found expression of the ERV3-1 protein in all 12 myeloid-phenotype patients and 7 out of 12 monocytic-phenotype patients, with a particular concentration observed at the membrane of some leukemic cells. Transcriptome analysis further suggested that upregulated ERV3-1 expression may be associated with chromosome 8 trisomy as anomaly was found to be more common among the high expression group than the low expression group. However, this finding was not corroborated by the immunohistochemical data. This discrepancy may have been caused, in part, by the small number of samples analyzed in this study. Although the precise associated molecular mechanisms remain unclear, our results suggest that ERV3-1 may be involved in AML development.


Subject(s)
Gene Products, env/genetics , Leukemia, Myeloid, Acute/genetics , Leukocytes/metabolism , Monocytes/metabolism , Adult , Aged , Aged, 80 and over , Cell Lineage , Chromosomes, Human, Pair 8/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Genome, Human/genetics , Humans , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/pathology , Leukocytes/virology , Male , Middle Aged , Monocytes/virology , Retroviridae/genetics , Trisomy/genetics , Trisomy/pathology
18.
Viruses ; 12(12)2020 12 12.
Article in English | MEDLINE | ID: mdl-33322850

ABSTRACT

A number of characteristics including lack of virulence and the ability to grow to high titers, have made bovine adenovirus-3 (BAdV-3) a vector of choice for further development as a vaccine-delivery vehicle for cattle. Despite the importance of blood leukocytes, including dendritic cells (DC), in the induction of protective immune responses, little is known about the interaction between BAdV-3 and bovine blood leukocytes. Here, we demonstrate that compared to other leukocytes, bovine blood monocytes and neutrophils are significantly transduced by BAdV404a (BAdV-3, expressing enhanced yellow green fluorescent protein [EYFP]) at a MOI of 1-5 without a significant difference in the mean fluorescence of EYFP expression. Moreover, though expression of some BAdV-3-specific proteins was observed, no progeny virions were detected in the transduced monocytes or neutrophils. Interestingly, addition of the "RGD" motif at the C-terminus of BAdV-3 minor capsid protein pIX (BAV888) enhanced the ability of the virus to enter the monocytes without altering the tropism of BAdV-3. The increased uptake of BAV888 by monocytes was associated with a significant increase in viral genome copies and the abundance of EYFP and BAdV-3 19K transcripts compared to BAdV404a-transduced monocytes. Our results suggest that BAdV-3 efficiently transduces monocytes and neutrophils in the absence of viral replication. Moreover, RGD-modified capsid significantly increases vector uptake without affecting the initial interaction with monocytes.


Subject(s)
Adenoviridae Infections/veterinary , Cattle Diseases/virology , Leukocytes/virology , Mastadenovirus/physiology , Viral Tropism , Animals , Cattle , Cattle Diseases/immunology , Cattle Diseases/metabolism , Cell Line , Gene Expression , Gene Expression Regulation, Viral , Leukocytes/immunology , Leukocytes/metabolism , Transduction, Genetic , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
19.
PLoS Pathog ; 16(11): e1009034, 2020 11.
Article in English | MEDLINE | ID: mdl-33253295

ABSTRACT

The interferon-induced tetratricopeptide repeat protein (Ifit2) protects mice from lethal neurotropic viruses. Neurotropic coronavirus MHV-RSA59 infection of Ifit2-/- mice caused pronounced morbidity and mortality accompanied by rampant virus replication and spread throughout the brain. In spite of the higher virus load, induction of many cytokines and chemokines in the brains of infected Ifit2-/- mice were similar to that in wild-type mice. In contrast, infected Ifit2-/- mice revealed significantly impaired microglial activation as well as reduced recruitment of NK1.1 T cells and CD4 T cells to the brain, possibly contributing to the lack of viral clearance. These two deficiencies were associated with a lower level of microglial expression of CX3CR1, the receptor of the CX3CL1 (Fractalkine) chemokine, which plays a critical role in both microglial activation and leukocyte recruitment. The above results uncovered a new potential role of an interferon-induced protein in immune protection.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Cell Movement/immunology , Coronavirus Infections/virology , Leukocytes/virology , Murine hepatitis virus/pathogenicity , RNA-Binding Proteins/metabolism , Virus Replication/immunology , Animals , Apoptosis Regulatory Proteins/deficiency , Coronavirus Infections/immunology , Cytokines/metabolism , Interferons/metabolism , Leukocytes/cytology , Leukocytes/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Murine hepatitis virus/metabolism
20.
Adv Mater ; 32(43): e2004901, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32924219

ABSTRACT

The COVID-19 pandemic has taken a significant toll on people worldwide, and there are currently no specific antivirus drugs or vaccines. Herein it is a therapeutic based on catalase, an antioxidant enzyme that can effectively breakdown hydrogen peroxide and minimize the downstream reactive oxygen species, which are excessively produced resulting from the infection and inflammatory process, is reported. Catalase assists to regulate production of cytokines, protect oxidative injury, and repress replication of SARS-CoV-2, as demonstrated in human leukocytes and alveolar epithelial cells, and rhesus macaques, without noticeable toxicity. Such a therapeutic can be readily manufactured at low cost as a potential treatment for COVID-19.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Betacoronavirus/drug effects , Catalase/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Animals , Anti-Inflammatory Agents/pharmacokinetics , Antioxidants/pharmacokinetics , Betacoronavirus/physiology , COVID-19 , Catalase/pharmacokinetics , Cell Line , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Humans , Leukocytes/drug effects , Leukocytes/metabolism , Leukocytes/virology , Macaca mulatta , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Pandemics , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/virology , SARS-CoV-2 , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...